ООО «ПРОМОБОТ»

ОБРАЗОВАТЕЛЬНАЯ РОБОТОТЕХНИЧЕСКАЯ ПЛАТФОРМА PROMOBOT M EDU

(M Edu)

Руководство по эксплуатации

ред. 01.04.2025

ООО «ПРОМОБОТ»

Информация для пользователя

Внешний вид изделия и пользовательского интерфейса может отличаться от изображений, представленных в данном документе. Компания постоянно улучшает продукт в связи с чем данное руководство периодически пересматривается и изменяется.

Содержание

1	ОПІ	ИСАНИЕ И РАБОТА PROMOBOT M EDU	6
2	Mep	ы безопасности при использовании	7
	2.1	Общие меры безопасности	7
	2.2	Меры безопасности при работе с модулем 3D-печати	8
	2.3	Меры безопасности при работе с модулем лазерной гравировки ¹	8
	2.4	Меры безопасности при работе с модулем захвата вакуумного и механ	ического
			8
3	Оби	цая информация	9
	3.1	Эксплуатационные ограничения	9
	3.2	Упаковка	10
	3.3	Маркировка	10
	3.4	Гарантийные обязательства	11
	3.5	Хранение	13
	3.6	Транспортирование	14
	3.7	Утилизация	15
4	Опи	сание устройства	16
	4.1	Технические характеристики	16
	4.1	Состав	20
	4.2	Манипулятор	23
		4.2.1 Основание	24
		4.2.2 Башня	27
		4.2.3 Порядок расположения контактов («распиновка разъемов»)	30
	4.1	Блок питания	36
	4.2	Внешний блок коммутации инструмента	37
	4.3	Поворотный модуль инструмента	
	4.4	Модуль захвата вакуумного	40
	4.5	Модуль захвата механического	42
	4.6	Модуль захвата пишущих инструментов	43
	4.7	Модуль 3D-печати	45
	4.8	Модуль лазерной гравировки	49
	4.9	Пульт управления	50
5	Вкл	ючение M Edu и запуск приложения	52
	5.1	Подключение к манипулятору монитора и элементов управления	52
	5.2	Подключение к манипулятору ПК через шнур сетевого интерфейса ЕТІ	HERNET
			54
6	Вык	слючение M Edu	57

7	Приложение Promobot M Control			59		
	7.1	Работа	«Без насадки» в приложении	60		
		7.1.1	Свободная настройка в режиме «Без насадки»	61		
		7.1.2	C++ / Python в режиме «Без насадки»	63		
	7.2	Работа	с Захватом пишущих инструментов в приложении	65		
		7.2.1	Свободная настройка в режиме «Рисование»	66		
		7.2.2	Blockly в режиме «Рисование»	68		
		7.2.3	Рисование в режиме «Рисование»	73		
	7.3	Работа	с Вакуумным захватом в приложении	75		
		7.3.1	Свободная настройка в режиме «Вакуумный захват»	75		
		7.3.2	Blockly в режиме «Вакуумный захват»	77		
		7.3.3	C++ / Python в режиме «Вакуумный захват»	82		
	7.4	Работа	с Механическим захватом в приложении	82		
		7.4.1	Свободная настройка в режиме «Механический захват»	83		
		7.4.2	C++ / Python в режиме «Механический захват»	85		
		7.4.3	Blockly в режиме «Вакуумный захват»	85		
	7.5	Работа	с Модулем лазерной гравировки в приложении	90		
		7.5.1	Свободная настройка в режиме «Гравировка» ¹	92		
		7.5.2	Blockly в режиме «Гравировка»	94		
		7.5.3	C++ / Python в режиме «Гравировка»	97		
		7.5.4	Рисование в режиме «Гравировка»	98		
	7.6	Работа	с модулем 3D-печати в приложении	99		
		7.6.1	Печать в режиме «Печать»	100		
8	Обн	овление	Promobot M Control	103		
9	Texr	ническое	е обслуживание М EDU	104		
	9.1	Общие	указания	104		
	9.2	Меры (безопасности	104		
	9.3	Порядо	ок технического обслуживания изделия	104		

Определения, обозначения и сокращения

В настоящем документе применяют следующие термины с соответствующими определениями, сокращения и обозначения:

M Edu	_	Образовательная робототехническая платформа
		Promobot M Edu
Манипулятор,	_	Многофункциональный настольный четырехосевой
манипулятор M Edu		робот-манипулятор с плоскопараллельной кинематикой
		и обратной связью, входящий в состав М Edu
OC	_	Операционная система
ПК	_	Персональный компьютер
ПО	_	Программное обеспечение
Приложение M Edu	_	Веб-интерфейс для настройки и управления
		манипулятором
ШИМ	_	Широтно-импульсная модуляция

1 ОПИСАНИЕ И РАБОТА РВОМОВОТ М ЕДИ

Образовательная робототехническая платформа Promobot M Edu представляет собой программно-аппаратный комплекс, состоящий из многофункционального настольного четырехосевого робот-манипулятора с плоскопараллельной кинематикой и обратной связью, набора сменных рабочих инструментов и методических указаний, предназначенный для использования в образовательных целях.

М Edu обеспечивает пользователю возможность освоения навыков программирования, основ управления роботизированными системами и принципов работы производственных линий.

2 Меры безопасности при использовании

2.1 Общие меры безопасности

К работе с M Edu допускаются только лица, изучившие эксплуатационную документацию на M Edu, прошедшие инструктаж по технике безопасности с обязательной соответствующей отметкой в журнале инструктажа по технике безопасности.

Работающие с М Еdu обязаны:

- выполнять требования эксплуатационной документации, правил электро- и пожарной безопасности;
- не допускать, чтобы сетевые и интерфейсные кабели были скручены или передавлены, а также располагать их там, где их могут легко повредить;
- контролировать все процессы во время работы;
- после завершения процессов немедленно выключить оборудование;
- избегать попадание рук и других частей тела в рабочую зону манипулятора
 M Edu во включенном состоянии;
- при появлении посторонних шумов прекратить работу и обесточить оборудование;
- соблюдать в чистоте рабочую поверхность манипулятора M Edu от загрязнений и посторонних предметов;
- при появлении неисправности сообщить об этом в сервисную службу компании-изготовителя.

Запрещается:

- производить действия, противоречащие эксплуатационной документации на M Edu;
- оставлять работающий манипулятор М Edu без присмотра;
- позволять лицам младше 18 лет использовать М Edu в одиночку;
- работать во взрывоопасной среде, рядом с легковоспламеняющимися предметами;
- подключать дополнительное оборудование без выключения манипулятора;
- перемещать манипулятор во включенном состоянии;

- открывать и разбирать корпус манипулятора и сменных модулей;
- модифицировать (изменять или удалять элементы конструкции) манипулятор;
- производить ремонт М Edu самостоятельно;
- использовать M Edu не по назначению.

2.2 Меры безопасности при работе с модулем 3D-печати

При работе с модулем 3D-печати не допускается расположение рабочего места в помещениях без наличия естественной или искусственной вентиляции.

Запрещается трогать нагретый экструдер и столик для печати. Запрещается располагать предметы в рабочей зоне модуля 3D-печати.

2.3 Меры безопасности при работе с модулем лазерной гравировки¹

При работе с модулем лазерной гравировки допускается работать только в защитных очках.

Запрещается:

- смотреть на луч лазера;
- использовать модуль лазерной гравировки с материалами, выделяющие едкие вещества, а также отражающими металлами;
- направлять модуль лазерной гравировки на живых существ даже в случае, если он обесточен.

2.4 Меры безопасности при работе с модулем захвата вакуумного и механического

Запрещается:

- поднимать груз, масса которого превышает значение грузоподъемности, указанного в технических характеристиках;
- выключать манипулятор M Edu, если груз находится в подвешенном положении;
- приступать к работе, если есть механические повреждения у присоски или механического захвата;
- поднимать мокрый или влажный груз;
- поднимать острые предметы.
- ¹ При наличии в комплектации M Edu сменного модуля лазерной гравировки.

3 Общая информация

3.1 Эксплуатационные ограничения

Правила работы с M Edu:

- 1. Сборка, подготовка, включение, остановка и обслуживание устройства должны выполняться строго в соответствии с данным руководством.
- 2. Кто может работать с М Edu:
 - Самостоятельно работать с устройством могут только люди старше 18 лет.
 - Школьники и подростки могут использовать M Edu только под присмотром взрослых.
- 3. Безопасность при работе:
 - Всегда учитывайте ограничения, указанные в технических характеристиках устройства.
 - Не используйте M Edu, если температура, влажность или другие условия окружающей среды выходят за пределы, указанные в инструкции. Это может привести к поломке.
- 4. Пространство для работы:
 - Убедитесь, что вокруг M Edu достаточно свободного места. Минимальное расстояние до стен или других предметов должно быть не меньше 1 метра.
- 5. Защита от воды и повреждений:
 - Не работайте с устройством рядом с водой, чтобы избежать его повреждения.
 - Берегите M Edu от ударов, падений и других механических воздействий.
 Это может привести к попаданию внутрь пыли, жидкости или посторонних предметов.
- 6. Чистка устройства:
 - Не используйте абразивные или химически активные средства для очистки.
 Это может повредить поверхность.
- 7. Питание и аксессуары:
 - Используйте только оригинальный блок питания и аксессуары, которые идут в комплекте с устройством.

- Не подключайте M Edu к источникам питания с нестабильным напряжением.
- 8. Электромагнитные поля:
 - Не работайте с устройством рядом с источниками сильных электромагнитных полей (например, мощные магниты или генераторы).
 Это может нарушить работу электроники.

3.2 Упаковка

Упаковка M Edu (Рисунок 1) – это коробка из белого гофрокартона, с ручкой и ложементами внутри для защиты содержимого. При распаковке сохраняйте ее целостность для дальнейшего хранения и перевозки M Edu.

Рисунок 1 – Упаковка

3.3 Маркировка

Маркировка изделия (M Edu) есть как на упаковке, так и на самом устройстве.

На упаковке маркировка находится на боковых сторонах. Там указана следующая информация:

- наименование изделия;
- напряжение питания;
- максимальную потребляемую мощность;
- дата производства;
- информация о документах, в соответствии с которым произведена М Edu.
- комплект поставки;
- срок службы;
- гарантийный срок;
- информацию об изготовителе;
- информацию о сертификации;
- параметры упаковки;
- информация о грузополучателе;
- информация о пункте назначения.

Маркировка на манипуляторе расположена на дне основания манипулятора и содержит следующую информацию:

- наименование изделия;
- массу;
- габаритные размеры;
- напряжение питания;
- максимальную потребляемую мощность;
- дату производства;
- информацию об изготовителе;
- информацию о документах, в соответствии с которым произведена М Edu;
- информацию о сертификации.

3.4 Гарантийные обязательства

Гарантийный срок производителя составляет 12 (двенадцать) месяцев. Гарантийный срок исчисляется по общему правилу с даты приобретения M Edu у компании-производителя. Гарантийный срок на M Edu, приобретенный розничным потребителем (гражданином, приобретающим M Edu исключительно для личных, семейных, домашних и иных нужд, не связанных с осуществлением предпринимательской деятельности) исчисляется с даты приобретения M Edu розничным потребителем.

При обнаружении в M Edu недостатков в период гарантийного срока владелец обязуется незамедлительно письменно сообщить об этом компании-производителю, описав подробно признаки выявленного недостатка, и в течение одного рабочего дня обеспечить по требованию компании-производителя дистанционный доступ к M Edu для дистанционной диагностики.

В период гарантийного срока компания-производитель обязуется при получении претензии обеспечить безвозмездное устранение недостатков М Edu в срок не более 60 рабочих дней с момента получения компанией-производителем претензии и, в случае необходимости, предоставления дистанционного доступа к M Edu. Компания-производитель вправе по своему выбору осуществить замену M Edu ненадлежащего качества.

В случае существенного нарушения требований к качеству М Edu (обнаружения неустранимых недостатков, которые не могут быть устранены без несоразмерных расходов или затрат времени, или выявляются неоднократно, либо неоднократно проявляются вновь после их устранения) владелец вправе потребовать замены M Edu ненадлежащего качества.

Гарантийный срок продлевается на время, в течение которого M Edu не мог использоваться из-за обнаруженных в нем недостатков, а именно на период времени, равный периоду с момента получения уполномоченным лицом претензии о недостатках M Edu до момента устранения недостатков.

Гарантийное обслуживание осуществляется по выбору компании-производителя по месту ее нахождения или по месту нахождения М Edu. Гарантийному ремонту (замене) не подлежит M Edu:

- эксплуатировавшийся образом, не соответствующим требованиям руководства пользователя;
- имеющий по вине пользователей механические повреждения, явившиеся причиной обращения за гарантийным ремонтом;

- эксплуатировавшийся или хранившийся в условиях (среде), не соответствующей требованиям, установленным документацией на M Edu;
- прошедший модификацию (изменения) или ремонт без участия компаниипроизводителя.

Гарантийные обязательства распространяются на M Edu в той комплектации, в которой он находился на момент поставки компанией- производителем и не распространяются на недостатки, возникшие в результате неверной работы ПО Promobot M Control, разработанного (доработанного) пользователем самостоятельно без согласования с компанией-производителем.

Порядок осуществления гарантийного обслуживания/ремонта M Edu установлен Положением о гарантийном ремонте и проведении сервисного обслуживания оборудования ООО «ПРОМОБОТ», размещенного по ссылке: <u>https://promobot.ru/warranty-repair-and-service-provision/</u>.

В гарантийное обслуживание (ремонт) не включены дополнительные услуги, в том числе, загрузка информации на M Edu, доработка ПО Promobot M Control, функционала, мониторинг состояния M Edu, не связанный с исправлением недостатков. Дополнительные услуги оказываются на основании отдельно заключенного возмездного соглашения, в частности соглашения об уровне сервиса (SLA).

3.5 Хранение

- 1. Упаковка:
 - Сохраняйте коробку и упаковочные материалы в сухом месте. Они могут понадобиться для перевозки или хранения устройства в будущем.
- 2. Место хранения:
 - Убедитесь, что в помещении нет сырости, испарений воды, горючих жидкостей или газов.
 - М Edu должен храниться в отапливаемом и проветриваемом помещении.
 - Избегайте попадания прямых солнечных лучей.
 - Температура должна быть от $+5^{\circ}$ C до $+40^{\circ}$ C (лучше всего $+25^{\circ}$ C).
 - Влажность воздуха не должна превышать 65%.
- 3. Подготовка к хранению:

- Перед тем как убрать устройство на хранение, протрите его корпус сухой мягкой тканью.
- Проверьте, чтобы на рабочих поверхностях манипулятора и сменных модулей не осталось посторонних материалов.
- 4. Что нельзя делать:
 - Не кладите тяжелые предметы на коробку с М Edu.
 - Не допускайте посторонних людей к месту хранения устройства.

3.6 Транспортирование

- 1. Используйте оригинальную упаковку:
 - Перевозите M Edu только в коробке, в которой он был изначально упакован.
- 2. Условия перевозки:
 - Перевозить устройство можно любым крытым транспортом.
 - Рекомендуемая температура: от +10°С до +35°С.
 - Влажность воздуха не должна превышать 70%.
- 3. Если перевозили на холоде:
 - Если М Edu перевозили при минусовой температуре, перед включением оставьте его в теплом помещении на 2–3 часа, чтобы он прогрелся до температуры не ниже +10°C.
- 4. Как упаковать:
 - Убедитесь, что манипулятор, сменные модули и другие детали лежат на своих местах внутри коробки.
 - Не ставьте коробку вертикально она должна лежать ровно.
 - Перед транспортировкой проверьте, чтобы внутри коробки не было посторонних предметов.
- 5. Бережная перевозка:
 - Избегайте ударов и резких движений коробки во время перевозки.
 - Помните, что упаковка с М Edu это хрупкий груз, поэтому обращайтесь с ней аккуратно.

3.7 Утилизация

Срок эксплуатации М Edu – 3 года.

Если M Edu повреждена так, что ее больше нельзя использовать, утилизируйте ее.

Для предотвращения загрязнения окружающей среды все отходы, образующиеся при утилизации M Edu и ее частей, подлежат обязательному сбору с последующей утилизацией в установленном порядке и в соответствии с действующими требованиями и нормами отраслевой нормативной документации, в том числе в соответствии с СанПиНом 2.1.7.1322-03 «Гигиенические требования к размещению и обезвреживанию отходов производства и потребления».

Если это необходимо для налогового учета, операция по утилизации должна быть отражена в бухгалтерских документах в соответствии с законодательством той страны, в которой установлено оборудование.

4 Описание устройства

4.1 Технические характеристики

Nº	Параметр	Единица измерения	Значение
1	Грузоподъемность манипулятора, не более	Г	500
2	Количество степеней свободы манипулятора	ШТ.	4
3	Радиус рабочей зоны манипулятора, не более	ММ	385
4	Повторяемость, не хуже	ММ	0,2
5	Линейная скорость точки фиксатора инструмента манипулятора, не более	мм/с	100
6	Количество выходных портов общего назначения манипулятора	ШТ.	5
7	Типы проводных интерфейсов манипулятора	_	Ethernet, HDMI, USB, UART, RS-485, SPI, I2C, TTL, 1-Wire
8	Типы беспроводных интерфейсов манипулятора	-	Wi-Fi, Bluetooth
9	Поддерживаемый стандарт Wi-Fi	_	IEEE 802.11ac
10	Поддерживаемый стандарт Bluetooth	-	Bluetooth 5.0 / Bluetooth Low Energy (BLE)

Nº	Параметр	Единица измерения	Значение
11	Тип вычислительного модуля манипулятора	-	Raspberry Pi 5
12	Тип процессора вычислительного модуля манипулятора	-	Четырехядерный процессор Broadcom BCM2712
13	Частота процессора вычислительного модуля манипулятора	ГГц	2,4
14	Архитектура процессора вычислительного модуля манипулятора	-	64-бит Arm Cortex-A76
15	Объем памяти программ вычислительного модуля манипулятора	Гб	64
16	Объем оперативной памяти вычислительного модуля манипулятора	Гб	4
17	Количество сменных модулей инструмента в комплекте поставки	шт.	41
18	Максимальный диаметр пишущего инструмента для модуля захвата пишущих инструментов	ММ	10
19	Максимальный размер изображения для рисования	ММ	90x135
20	Тип расходных материалов для модуля 3D-печати	-	PLA-филамент

Nº	Параметр	Единица измерения	Значение
21	Диаметр PLA-филамента для модуля 3D-печати	ММ	1,75
22	Температура печатающей головки модуля 3D-печати, не более	°C	220
23	Длина тефлоновой трубки модуля 3D- печати	М	1
24	Максимальный размер объектов для 3D-печати	ММ	50x50x50
25	Диаметр присоски модуля захвата вакуумного	ММ	23
26	Мощность насоса модуля захвата вакуумного, не более	Вт	6
27	Минимальный раствор когтей модуля захвата механического	ММ	0
28	Максимальный раствор когтей модуля захвата механического	ММ	80
29	Углы поворота узла поворота башни (относительно положения по умолчанию)	градус	±168
30	Углы поворота узла поворота нижнего плеча (относительно вертикальной оси манипулятора)	градус	288
31	Углы поворота узла поворота верхнего плеча (относительно нижнего плеча)	градус	55144

N⁰	Параметр	Единица измерения	Значение
32	Углы поворота узла поворота инструмента (относительно положения по умолчанию)	градус	± 88
33	Входное напряжение блока питания	В	230
34	Частота входного напряжения блока питания	Гц	50
35	Выходное напряжение блока питания	В	12
36	Потребляемая мощность M Edu, не более	Вт	180
37	Ток выхода манипулятор (разъем 12V OUT), не более	А	4
38	Степень защиты корпуса	-	IP20
39	Диапазон рабочих температур	°C	+5+40
40	Допустимая относительная влажность воздуха, не более	%	70
41	Масса манипулятора, (±15%)	КГ	6
42	Macca M Edu в упаковке, (±15%)	КГ	10
43	Габаритные размеры манипулятора, ДхШхВ, не более	ММ	288x200x371
44	Габаритные размеры M Edu в упаковке, ДхШхВ, не более	ММ	480x350x250
	Сменный модуль лаз	зерной гравиров	зки ²

N⁰	Параметр	Единица измерения	Значение	
45	Мощность лазера модуля лазерной гравировки, не более	мВт	500	
46	Длина волны лазера модуля лазерной гравировки	НМ	650	
47	Максимальный размер изображения для лазерной гравировки	ММ	90x135	
¹ – При наличии в комплектации M Edu модуля лазерной гравировки количество сменных модулей инструмента в комплекте поставки увеличится до 5.				

² – При наличии в комплектации М Edu сменного модуля лазерной гравировки.

4.1 Состав

N⁰	Наименование	Краткое описание	Количество
1	Информационный лист	Ссылка и QR-код для получения пользовательской документации и методических пособий	1 шт.
2	Манипулятор	Многофункциональный настольный четырехосевой робот-манипулятор с плоскопараллельной кинематикой и обратной связью	1 шт.
3	Блок питания	Импульсный блок питания с кабелем для питания от сети переменного тока 230 В 50 Гц, вилка стандарта СЕЕ 4/7 (тип F) или	1 шт.

N⁰	Наименование	Краткое описание	Количество
		7/7 (тип E/F) с заземлением и выходным постоянным напряжением 12 В	
4	Пульт управления	Проводной USB-геймпад для ручного управления M Edu	1 шт.
5	Печатающая головка	Головка для печати PLA-филаментом; входит в комплект модуля 3D-печати	1 шт.
6	Экструдер	Настольный блок с сервоприводом для подачи PLA-филамента в экструдер; входит в комплект модуля 3D-печати	1 шт.
7	Трубка тефлоновая	Трубка для подачи PLA-филамента в экструдер; входит в комплект модуля 3D- печати	1 шт.
8	Держатель катушки PLA-филамента	Две направляющие для установки катушки PLA-филамента; входит в комплект модуля 3D-печати	1 шт.
9	Защитное стекло	Стекло для защиты поверхности при 3D- печати; входит в комплект модуля 3D- печати	1 шт.
10	Тестовый PLA-филамент	PLA-филамент для проверки функции 3D- печати; входит в комплект модуля 3D- печати	10 м
11	Модуль лазерной гравировки ¹	Модуль лазерный красный 650 нм 250 мВт с фокусировкой	1 шт.
12	Очки защитные ¹	Защитные очки от фиолетового, синего и красного лазерного излучения длиной волны 405-450 нм и 635-660 нм	1 шт.

N⁰	Наименование	Краткое описание	Количество
13	Внешний блок коммутации инструмента	Блок с вакуумным насосом для модуля захвата вакуумного и безопасной коммутацией питания модуля лазерной гравировки ¹	1 шт.
14	Ключ коммутации питания модуля лазерной гравировки ¹	Ключ от ключ-выключателя, предназначенного для безопасной коммутации питания модуля лазерной гравировки	2 шт.
15	Модуль захвата пишущих инструментов	Захват для пишущих инструментов диаметром до 10 мм	1 шт.
16	Ручка Promobot	Шариковая ручка; используется совместно с модулем захвата пишущих инструментов	1 шт.
17	Поворотный модуль инструмента	Блок сервопривода для обеспечения вращения инструмента (не используется для модуля 3D-печати, модуля лазерной гравировки и модуля захвата пишущих инструментов)	1 шт.
18	Модуль захвата вакуумного	Модуль с вакуумной присоской	1 шт.
19	Модуль захвата механического	Блок инструмента с двумя акриловыми когтями, приводимыми в движение сервоприводом	1 шт.
20	Шнур сетевого интерфейса ETHERNET	Ответный шнур разъема сетевого интерфейса ETHERNET	1 шт.

N⁰	Наименование	Краткое описание	Количество					
21	Подложка с разметкой	Рабочее поле манипулятора с разметкой для точного размещения объектов и удобства использования при обучении	1 шт.					
22	Встроенное программное обеспечение Promobot M Control	ПО, предназначенное для управления манипулятором	1 шт.					
¹ – При наличии в комплектации M Edu сменного модуля лазерной гравировки								

4.2 Манипулятор

Основным компонентом M Edu является настольный 4-х осевой манипулятор (Рисунок 2), который состоит из:

- основания;
- башни;
- полиуретанового корпуса.

Чтобы устройством было удобно и безопасно пользоваться, в комплект входят защитные элементы, провода и расходники, которые помогают получить доступ ко всем функциям.

M Edu можно улучшать и расширять, подключая к нему дополнительные совместимые модули. Это делает устройство более универсальным и полезным для разных задач.

Рисунок 2 – Настольный 4-х осевой манипулятор

4.2.1 Основание

Основание манипулятора – это неразборный блок с разъемами для внешних подключений, расположенных на задней панели (Рисунок 3).

Рисунок 3 – Панель разъемов для подключения внешних устройств

- 1. Тумблер включения/выключения питания манипулятора:
- 2. «0» питание выключено;

- 3. «|» питание включено.
- 4. UART для подключения внешнего оборудования по последовательному интерфейсу UART.
- 5. ETHERNET для подключения манипулятора к компьютеру.
- 6. USB для подключения элементов управления (компьютерная мышь, клавиатура, пульт управления).
- 7. GPIO для подключения внешних датчиков и исполнительных механизмов.
- 8. HDMI для подключения монитора.
- 9. RS-485 для подключения внешнего оборудования по последовательному интерфейсу RS-485.
- 10. STEP/DIR для прямого управления драйверами шаговых двигателей по интерфейсу STEP/DIR.
- 11. TTL для подключения сервопривода с интерфейсом TTL.
- 12. STEPPER для подключения шагового двигателя.
- 13. 12v ОUT для питания внешнего оборудования (блок коммутации инструмента, нагревательный элемент печатающей головки).
- 14. POWER 12v для подключения блока питания манипулятора.

Для правильного и безопасного подключения дополнительных совместимых модулей к манипулятору пользуйтесь информацией о «распиновке разъемов».

Также в основании расположен динамик для обеспечения обратной связи пользователю при взаимодействии с M Edu.

В качестве «мозга», основного вычислительного модуля M Edu, используется одноплатный компьютер Raspberry Pi 5 (Рисунок 4) с операционной системой. Это делает устройство автономным (для работы с M Edu не нужен компьютер).

Рисунок 4 – Одноплатный компьютер Raspberry Pi 5

Управление дополнительными системами M Edu осуществляется через встроенный микроконтроллер STM32.

Для выполнения всех функций M Edu достаточно подключить к манипулятору монитор и элементы управления (компьютерная мышь, клавиатура).

Также можно использовать внешний компьютер, чтобы разделить задачи: Raspberry Pi 5 будет управлять манипулятором, а компьютер – отвечать за графический интерфейс.

На корпусе основания находится кнопка включения/выключения манипулятора (Рисунок 5). Кнопка не фиксируется, то есть нажимаешь ее – манипулятор выключается.

Эта кнопка удобна тем, что можно выключить устройство, не трогая основной переключатель питания (тумблер). Если необходимо снова включить манипулятор, просто нажмите эту кнопку еще раз.

Рисунок 5 – Кнопка включения/выключения манипулятора

4.2.2 Башня

Башня закреплена на основании манипулятора. На башне закреплены плечо и стрела манипулятора (Рисунок 6).

Рисунок 6 – Манипулятор, где 1 – башня; 2 – плечо; 3 – стрела; 4 – блок инструмента

Движение плеча и стрелы манипулятора происходит благодаря трем поворотным узлам (J1, J2, J3) (Рисунок 7). Эти узлы приводятся в движение шаговыми двигателями, которые работают через ременные передачи. Чтобы контролировать положение узлов, используются энкодеры (датчики положения) и концевые выключатели (датчики, которые показывают крайние точки движения).

Рисунок 7 – Движение плеча и стрелы манипулятора

На стреле расположен блок инструмента и панель разъемов для подключения сменных модулей с кнопкой FreeDrive (Рисунок 8).

Рисунок 8 – Стрела манипулятора (вид сверху), где: 6 – панель разъемов для подключения сменных модулей; 7 – кнопка FreeDrive

На панели разъемов для подключения сменных модулей расположены разъемы (сверху-вниз):

- 1. ТЕМР для подключения датчика температуры печатающей головки и лазерной головки¹.
- 2. FAN для подключения вентилятора печатающей головки.
- 3. GP3 для подключения поворотного модуля инструмента.
- 4. GP3 для подключения привода модуля захвата механического.

Для правильного и безопасного подключения дополнительных совместимых модулей к манипулятору пользуйтесь информацией о «распиновке разъемов».

¹ — При наличии в комплектации М Edu сменного модуля лазерной гравировки

4.2.3 Порядок расположения контактов («распиновка разъемов»)

Для правильного и безопасного подключения дополнительных совместимых модулей к манипулятору пользуйтесь информацией о «распиновке разъемов».

Примечание

- 1 Первый контакт для каждого разъема находится слева.
- 2 Для разъема UART контакты считаются как: верхний левый 1, нижний левый 2, ..., верхний правый 9, нижний правый 10.
- 3 Прочерк в названии контакта контакт в текущей ревизии не используется.

Разъем	Название ответного разъема на кабель	Но- мер конта- кта	Название контакта	Тип контакта	Параметры сигнала
RS-485	PHR-3 произво- дитель JST	1	A	Интерфейсный порт	Допустимое напряжение: - 8+13 В
		2	В	Интерфейсный порт	Допустимое напряжение: - 8+13 В
		3	GND	Земля	-
STEP/ DIR	РНR-8 произво- дитель JST	1	Шаг (привод верхнего плеча)	Вход	Допустимое напряжение: 03,6 В
		2	Направление (привод верхнего плеча)	Вход	Допустимое напряжение: 03,6 В

Разъем	Название ответного разъема на кабель	Но- мер конта- кта	Название контакта	Тип контакта	Параметры сигнала
		3	Шаг (привод нижнего плеча)	Вход	Допустимое напряжение: 03,6 В
		4	Направ- ление (привод нижнего плеча)	Вход	Допустимое напряжение: 03,6 В
		5	Шаг (привод базы)	Вход	Допустимое напряжение: 03,6 В
		6	Направ- ление (привод базы)	Вход	Допустимое напряжение: 03,6 В
		7	Шаг (привод внешнего шагового мотора)	Вход	Допустимое напряжение: 03,6 В
		8	Направ- ление (привод внешнего шагового мотора)	Вход	Допустимое напряжение: 03,6 В

Разъем	Название ответного разъема на кабель	Но- мер конта- кта	Название контакта	Тип контакта	Параметры сигнала
TTL	PHR-4 произво- дитель JST	1	GND	Земля	-
		2	12 B	Выход	Максималь- ный ток: 2 А
		3	-	-	-
		4	TTL	Интерфейсный порт	Допустимое напряжение: 03,6 В Максималь- ный ток: 3,3 мА
STEPPER	РНR-4 произво- дитель JST	1	Обмотка А2	Выход	Максималь- ный ток обмотки: 0,5 А
		2	Обмотка А1	Выход	Максималь- ный ток обмотки: 0,5 А
		3	Обмотка В1	Выход	Максималь- ный ток обмотки: 0,5 А
		4	Обмотка В2	Выход	Максималь- ный ток обмотки: 0,5 А
12V OUT		1	12 B	Выход	Максималь- ный ток: 2 А

Разъем	Название ответного разъема на кабель	Но- мер конта- кта	Название контакта	Тип контакта	Параметры сигнала
	ХНР-2 произво- дитель JST	2	Управляемая земля	Выход	Максималь- ный ток: 2 А
UART	IDC-10F произво- дитель Connfly	1	5 B	Выход	Максималь- ный ток: 100 мА
		2	GND	Земля	-
		3	RX	Вход	Допустимое напряжение: 05,5 В
		4	ТХ	Выход	Максималь- ный ток: 20 мА
		5	-	-	-
		6	-	-	-
		7	-	-	-
		8	-	-	-
		9	12 B	Выход	Максималь- ный ток: 100 мА
		10	GND	Земля	-

Разъем	Название ответного разъема на кабель	Но- мер конта- кта	Название контакта	Тип контакта	Параметры сигнала
GPIO	РНR-6 произво- дитель JST	1	Порт 1/SCK	Вход АЦП/Выход ШИМ/Интерфейсный порт	Допустимое напряжение: 05,5 В Максималь- ный ток: 20 мА
		2	Порт 2/MISO	Вход АЦП/Выход ШИМ/Интер- фейсный порт	Допустимое напряжение: 05,5 В Максималь- ный ток: 20 мА
		3	Порт 3/MOSI	Вход АЦП/Выход ШИМ/Интер- фейсный порт	Допустимое напряжение: 05,5 В Максималь- ный ток: 20 мА
		4	Порт 4/SCL	Вход АЦП/Выход ШИМ/Интер- фейсный порт	Допустимое напряжение: 05,5 В Максималь- ный ток: 20 мА
		5	Порт 5/SDA	Вход АЦП/Выход ШИМ/Интер- фейсный порт	Допустимое напряжение: 05,5 В Максималь- ный ток: 20 мА

Разъем	Название ответного разъема на кабель	Но- мер конта- кта	Название контакта	Тип контакта	Параметры сигнала
		6	GND	Земля	-
TEMP	PHR-2	1	GND	Земля	-
	произво- дитель JST	2	Темпе- ратура	Вход	Допустимое напряжение: 05,5 В
FAN	ХНР-2 произво- дитель JST	1	Управ- ляемая земля	Выход	Максималь- ный ток: 1 А
		2	12 B	Выход	Максималь- ный ток: 1 А
GP3	РНR-4 произво- дитель JST	1	TTL/PWM	Интерфейсный порт/Выход ШИМ	Допустимое напряжение: 05,5 В Максималь- ный ток: 20 мА
		2	АЦП	Вход	Допустимое напряжение: 05,5 В
		3	5 B	Выход	Максималь- ный ток: 1 А
		4	GND	Земля	-
GP4	РНR-4 произво- дитель JST	1	TTL/PWM	Интерфейсный порт/Выход ШИМ	Допустимое напряжение: 05,5 В

Разъем	Название ответного разъема на кабель	Но- мер конта- кта	Название контакта	Тип контакта	Параметры сигнала
					Максималь- ный ток: 20 мА
		2	АЦП	Вход	Допустимое напряжение: 05,5 В
		3	5 B	Выход	Максимальный ток: 1 А
		4	GND	Земля	-

4.1 Блок питания

Блок питания (Рисунок 9) – это устройство, которое превращает переменное напряжение 230 В (как в розетке) в постоянное напряжение 12 В. У него есть специальный контакт для заземления, который делает использование М Edu безопасным.

Рисунок 9 – Блок питания

Для подключения блока питания к M Edu, вставьте его в разъем POWER 12V на панели разъемов для подключения внешних устройств.

Примечание – Подключение блока питания к М Edu разрешается только при установке тумблера в положении «0». Использование M Edu запрещается при поврежденных элементах корпуса или кабелей блока питания.

4.2 Внешний блок коммутации инструмента

Внешний блок коммутации инструмента (Рисунок 10) предназначен для безопасной коммутации питания модуля лазерной гравировки¹ и работы модуля захвата вакуумного.

Рисунок 10 – Внешний блок коммутации инструмента

Внутри блока установлен вакуумный насос для присасывания предметов вакуумной присоской. Для этого блок коммутации инструмента требуется подключить к разъему 12V OUT на панели разъемов для подключения внешних устройств.

Снаружи блока – ключ-выключатель для включения/выключения питания лазерной головки. Для этого блок коммутации инструмента требуется подключить к разъему TTL на панели разъемов для подключения внешних устройств.

4.3 Поворотный модуль инструмента

В поворотном модуле инструмента (Рисунок 11) располагается четвертый поворотный узел (J4) манипулятора.

¹ — При наличии в комплектации М Edu сменного модуля лазерной гравировки.

Рисунок 11 – Поворотный модуль инструмента

Поворотный модуль инструмента вставляется в специальное гнездо в блоке инструмента (Рисунок 12).

Рисунок 12 – Установка поворотного модуля инструмента

После этого он закрепляется винтом, который прижимает его и надежно фиксирует. Провода поворотного модуля подключаются к разъему 3. GP3 на панели разъемов для подключения сменных модулей (Рисунок 13).

Рисунок 13 – Подключение проводов поворотного модуля

Через поворотный модуль подключаются механический и вакуумный захваты.

Примечание – Все монтажные работы допускается производить только на обесточенном оборудовании.

4.4 Модуль захвата вакуумного

Модуль захвата вакуумного предназначен для того, чтобы перемещать предметы.

Модуль состоит из присоски и вакуумного насоса, расположенного в блоке коммутации инструмента (Рисунок 14).

Рисунок 14 – Модуль захвата вакуумного, где: 1 – присоски; 2 – вакуумный насос; 3 – винты на муфте; 4 – полиуретановая трубка; 5 – фитинговые держатели

Принцип работы: между присоской и поверхностью предмета создается низкое давление (вакуум), благодаря чему предмет прилипает к присоске и его можно перемещать.

Установка и подключение модуля захвата вакуумного:

Примечание – Все монтажные работы допускается производить только на обесточенном.

- 1. Установите присоску вакуумного захвата в поворотный модуль инструмента:
 - 1) Возьмите поворотный модуль, ослабьте винты на муфте.
 - 2) Закрутите присоску в поворотный модуль и затяните винты на муфте.
- 2. Присоедините полиуретановую трубку:
 - Один конец трубки присоедините к присоске. Для закрепления используются фитинговые держатели.
 - Второй конец трубки присоедините к блоку коммутации инструмента. Для закрепления также используются фитинговые держатели.

Примечание – Не отсоединяйте полиуретановую трубку от блока коммутации и присоски после использования модуля, их можно хранить в сборе.

- 3. Установите поворотный модуль инструмента в специальное гнездо в блоке инструмента и подключите провода.
- 4. Подключите блок коммутации инструмента к манипулятору.
- 5. Включите манипулятор, руководствуясь инструкцией.

Модуль вакуумного захвата готов к работе.

4.5 Модуль захвата механического

Модуль захвата механического предназначен для того, чтобы перемещать предметы. Модуль состоит из привода и двух когтей (Рисунок 15).

Рисунок 15 – Модуль захвата механического, где: 1 – привод механического захвата, 2 – когти, 3 – винты на муфте

Принцип работы: привод сжимает когти механического захвата, и они зажимают предмет между собой. Благодаря этому предмет можно легко перемещать.

Установка и подключение модуля захвата механического:

Примечание – Все монтажные работы допускается производить только на обесточенном оборудовании.

- 1. Установите модуль механического захвата в поворотный модуль инструмента:
 - 1) Возьмите поворотный модуль, ослабьте винты на муфте (Рисунок 15).
 - 2) Закрутите захват в поворотный модуль и затяните винты на муфте.

- 2. Установите поворотный модуль инструмента в специальное гнездо в блоке инструмента и подключите провода поворотного модуля.
- 3. Подключите провода механического захвата к разъему 4. GP3 на панели разъемов для подключения сменных модулей (Рисунок 16).

Рисунок 16 – Подключение проводов механического захвата

Включите манипулятор, руководствуясь инструкцией. Модуль захвата механического готов к работе.

4.6 Модуль захвата пишущих инструментов

Модуль захвата пишущих инструментов (Рисунок 17) предназначен для рисования. Модуль состоит из захвата пишущих инструментов и держателя захвата.

Принцип работы: в захват вставляется ручка или фломастер толщиной до 10 мм. Внутри захвата есть пружина, которая слегка нажимает на пишущий инструмент, чтобы он касался бумаги. Благодаря этому можно писать или рисовать.

Установка и подключение модуля захвата пишущих инструментов:

- 1. Возьмите захват и ослабьте винт.
- 2. Вставьте ручку (или фломастер) так, чтобы кончик выступал примерно на 4,5 см вниз и закрутите винт, чтобы зафиксировать.
- 3. Установите держатель захвата в специальное гнездо в блоке инструмента и закрепите винтом.
- 4. Расположите бумагу под стрелой манипулятора на ровную поверхность, которая не скользит, или закрепите края бумаги скотчем.
- 5. Включите манипулятор, руководствуясь инструкцией.

Модуль захвата пишущих инструментов готов к работе.

Рисунок 17 – Модуль захвата пишущих инструментов, где: 1 – захвата пишущих инструментов; 2 – держатель захвата; 3 – винт

4.7 Модуль 3D-печати

Модуль 3D-печати (Рисунок 18) предназначен для печати 3D-объектов PLA-филаментом.

Рисунок 18 – Модуль 3D-печати

Модуль состоит из следующих компонентов:

- 1. Экструдер (блок подачи PLA-филамента);
- 2. Печатающая головка;
- 3. Тефлоновая трубка для подачи PLA-филамента;
- 4. Держатель для катушки с PLA-филаментом;
- 5. Защитное стекло.

Принцип работы: экструдер через тефлоновую трубку подает пластиковую нить (PLA-филамент) в печатающую головку. Там нить нагревается до нужной температуры, становится жидкой и наносится на защитное стекло. Манипулятор двигает печатающую головку так, чтобы получилась нужная фигура.

Установка и подключение модуля 3D-печати:

Примечание – Все монтажные работы допускается производить только на обесточенном оборудовании.

- 1. Установите и подключите печатающую головку:
 - Возьмите печатающую головку и приведите ее в рабочее положение (Рисунок 19).

Рисунок 19 – Приведение печатающей головки в рабочее положение

- 2) Установите печатающую головку в блок инструмента и закрепите винтом.
- 3) Подключите провод нагревательного элемента к разъему 12V OUT на панели разъемов для подключения внешних устройств.
- 4) Подключите провода датчика температуры и вентилятора к разъемам1. ТЕМР и 2. FAN на стреле манипулятора (Рисунок 20).

Рисунок 20 – Подключение провода датчика температуры и вентилятора

2. Установите и подключите экструдер:

Примечание – Для осуществления тестовой печати в комплект также входят 10 метров PLA-филамента.

- 1) Возьмите тефлоновую трубку и с помощью фитинговых держателей присоедините одни конец к печатающей головке, а другой к экструдеру.
- 2) Установите катушку PLA-филамента с держателем на стол (при наличии).
- Возьмите экструдер и открутите на нем прижимной винт, откройте его (Рисунок 21).

Рисунок 21 – Экструдер

 Возьмите пластиковую нить и заправьте ее через экструдер по тефлоновой трубке до печатающей головки (до упора) (Рисунок 22).

Рисунок 22 – Заправка пластиковой нити в экструдер

- 5) Закройте экструдер и закрутите на нем прижимной винт.
- 6) Подключите провода экструдера к разъему STEPPER на панели разъемов для подключения внешних устройств (Рисунок 23).

Рисунок 23 – Подключение проводов экструдера

- 3. Подготовьте поверхность для 3D-печати (Рисунок 24):
 - Расположите защитное стекло на поверхности стола в 10 см от корпуса манипулятора и закрепите его бумажным скотчем по краям.
 - Наклейте в центр стекла бумажный скотч 10х10 см для того, чтобы объект при печати не приклеился к стеклу.

Рисунок 24 – Расположение защитного стекла

4. Включите манипулятор, руководствуясь инструкцией.

Модуль 3D-печати готов к работе.

4.8 Модуль лазерной гравировки

Модуль лазерной гравировки¹ предназначен для нанесения изображений на дерево или картон.

Примечание – Не допускается использовать другие материалы, потому что при работе они могут выделять вредные испарения.

Модуль состоит из лазерной головки с фиксатором инструмента и защитных очков (Рисунок 25). Для обеспечения безопасной работы питание модуля управляется через ключ-выключатель.

Рисунок 25 – Модуль лазерной гравировки

Принцип работы: лазерный луч точечно нагревает поверхность, из-за чего материал в этом месте меняет свои свойства и цвет. Благодаря этому на дереве или картоне можно получить изображение.

Установка и подключение модуля лазерной гравировки:

Примечание – Все монтажные работы допускается производить только на обесточенном оборудовании.

¹ — При наличии в комплектации М Edu сменного модуля лазерной гравировки.

- 1. Установите лазерную головку в блок инструмента и закрепите винтом.
- 2. Подключите провод к разъему 4. GP3 на стреле манипулятора (Рисунок 26).

Рисунок 26 – Подключение проводов лазерной головки

- 3. Подключите блок коммутации инструмента к разъему TTL на панели разъемов для подключения внешних устройств.
- 4. Расположите материал для выжигания на поверхности стола в 10 см от корпуса манипулятора (под стрелой манипулятора).
- 5. Наденьте защитные очки.

Примечание – Прямой или отраженный луч лазера может вызвать ожоги или слепоту.

6. Включите манипулятор, руководствуясь инструкцией.

Модуль лазерной гравировки готов к работе.

4.9 Пульт управления

Пульт управления выглядит как игровой джойстик с кнопками и стиком (Рисунок 27).

Рисунок 27 – Пульт управления

Он подключается в разъем USB на панели для подключения внешних устройств.

С помощью этого пульта можно вручную управлять движением манипулятора, используя кнопки и стик. Возможности управления через пульт зависят от версии программного обеспечения, установленного на устройстве.

5 Включение M Edu и запуск приложения

- 1. Поставьте манипулятор на ровную поверхность. Убедитесь, что вокруг него (в радиусе 0,5 метра) нет никаких лишних предметов.
- 2. Переведите тумблер включения питания манипулятора в положение «0» (выключено).
- 3. Установите нужный сменный модуль.
- 4. Выберите, как вы хотите подключить манипулятор.

5.1 Подключение к манипулятору монитора и элементов управления

- 1. Подключите блок питания к манипулятору и к розетке.
- 2. Подключите монитор к манипулятору. Вставьте кабеля HDMI монитора в соответствующий разъем манипулятора.
- 3. Подключите элементы управления (мышь, клавиатура) в разъем USB на панели манипулятора.
- 4. Переведите тумблер включения питания манипулятора в положение «|» (включено).
- 5. На мониторе отобразится загрузка операционной системы.
- 6. Прозвучит сигнал «Система запущена. Внимание начинается процесс калибровки. Будьте осторожны, не касайтесь манипулятора и убедитесь, что посторонние предметы не помешают движению устройства. Калибровка начнется через 5 4 3 2 1». Запустится калибровка: манипулятор должен сначала поднять стрелу вверх, затем совершить повороты влево вправо и остановиться в исходном положении (Рисунок 28). По окончанию калибровке прозвучит сигнал: «Калибровка прошла успешно».

Рисунок 28 – Исходное положение манипулятора

Примечание – Исходное положение манипулятора (или нулевое положение) – это стартовая позиция для манипулятора при его включении. При некорректной работе системы манипулятора, он возвращается к стартовой позиции, затем повторяет операцию. Это помогает манипулятору всегда иметь точку отсчета для работы.

7. После загрузки рабочего стола автоматически запустится приложение Promobot M Control (Рисунок 29).

Рисунок 29 – Главное меню приложения Promobot M Control

Примечание – При первом запуске М Edu необходимо установить последнюю версию приложения. Инструкция по обновлению описана в разделе «Обновление Promobot M Control».

5.2 Подключение к манипулятору ПК через шнур сетевого интерфейса ETHERNET

1. Подключите блок питания к манипулятору и к розетке. Переведите тумблер включения питания манипулятора в положение «|» (включено). Перед включением манипулятора прозвучит сигнал «Система запущена. Внимание начинается процесс калибровки. Будьте осторожны, не касайтесь манипулятора и убедитесь, что посторонние предметы не помешают движению устройства. Калибровка начнется через 5 4 3 2 1». Запустится калибровка: манипулятор

должен сначала поднять стрелу вверх, затем совершить повороты влево вправо и остановиться в исходном положении (Рисунок 28). По окончанию калибровке прозвучит сигнал: «Калибровка прошла успешно».

Примечание – Исходное положение манипулятора (или нулевое положение) – это стартовая позиция для манипулятора при его включении. При некорректной работе системы манипулятора, он возвращается к стартовой позиции, затем повторяет операцию. Это помогает манипулятору всегда иметь точку отсчета для работы.

- 2. На ПК откройте веб-браузер:
- 3. В адресной строке введите ip-адрес манипулятора «10.5.0.2». Отобразится веб-интерфейс приложения Promobot M Control (Рисунок 29).

После включения манипулятора и запуска приложения подключите манипулятор:

4. Нажмите кнопку «Действия» – «Подключиться».

Рисунок 30 – Кнопка «Действия»

5. Статус подключения к манипулятору изменится на «Подключен». Манипулятор готов к работе.

Рисунок 31 – Статус подключения к манипулятору

В случае не успешного подключения, отобразится уведомление «Манипулятор не найден. Проверьте подключение и попробуйте снова».

Рисунок 32 – Уведомление

Нажмите кнопку «Повторить» для повторного подключения после проверки либо «Отмена» для закрытия уведомления.

6 Выключение M Edu

Выключить манипулятор можно двумя способами:

- 1. Выключение через FreeDrive:
 - 1) Активируйте режим «FreeDrive»:
 - Зажмите кнопку «FreeDrive» на стреле манипулятора или в приложении нажмите кнопку «Действия» – «Режим FreeDrive» (Рисунок 33).

Рисунок 33 – Кнопка «Действия»

- Следуйте подсказкам на экране (Рисунок 34).

Переход в режим Freedrive
Free Drive – это режим, когда система сбрасывает настройки и прекращает подачу питания в плечевой поддон, плечо и стрелу перед выключением манипулятора. В это время устройство будет находиться в свободном движении и может упасть. Чтобы избежать удара стрелы, составных механизмов или насадки о поверхность, выполните следующие действия:
 Возъмите стрелу манипулятора рукой Аккуратно её придерживайте. Вы почувствуете тяжесть, когда система сбросит настройки и отключит питание Нажмите кнопку "Вилючить Free Drive"
Включить Free Drive Отмена

Рисунок 34 – Подсказки

- 2) Опустите стрелу на стол.
- Выключите манипулятор, нажав на кнопку включения/выключения на корпусе манипулятора.

Прозвучит голосовое сообщение: «Я начал подготовку к выключению. Убедитесь, что стрела манипулятора находится на столе. Сделать это можно через режим FreeDrive. Если стрела поднята, придержите ее во избежание падения».

После выключения манипулятора переведите тумблер включения питания манипулятора в положение «0» (выключено).

2. Выключение через операционную систему (если вы пользовались манипулятором с использованием монитора и элементов управления):

也

1) В правом углу рабочего стола нажмите комбинацию кнопок \hookrightarrow \rightarrow «Power Off» (Рисунок 35).

	•	ru	?	1
			2 (1)	U
() Power Off				
3 Restart				- 1
Power Off				
Log Out				
Switch User				
4 0				>
♥ Wi-Fi Promobot_ro)		Bluetoo	th	>
Power Mode Balanced	*	Night Lig	ght	
① Dark Style	*	Airplane	Mode	D

Рисунок 35 – Комбинация кнопок

Отобразится уведомлении о выключении (Рисунок 36).

Рисунок 36 – Уведомлении о выключении

 Подождите 50 секунд (манипулятор отключится сам) или нажмите кнопку «Power Off».

7 Приложение Promobot M Control

Приложение Promobot M Control позволяет:

- придумывать и создавать алгоритмы действий манипулятора;
- запускать воспроизведение действий как на самом манипуляторе, так и в виртуальной среде;
- настраивать работу с насадками манипулятора;
- изучать основы программирования на языках C++/Python, а также запускать на манипуляторе прописанный скрипт.

		MEdu - Chromium		- • ×				
	Руководство	о пользователя	ючен Действия					
		Выбор режима						
	S	2	\square					
	Рисование	Гравировка	3D-печать					
	B	Č-	ドイン マン					
	Механический захват	Вакуумный захват	Без насадки					
версия: 1.12.	1							

Рисунок 37 – Главное меню приложения Promobot M Control

Главное меню приложения Promobot M Control (Рисунок 37) отображает режимы работы со сменными модулями:

- Модуль захвата пишущих инструментов режим «Рисование».
- Модуль лазерной гравировки режим «Гравировка»¹.
- Модуль захвата вакуумного режим «Вакуумный захват».

¹ — Режим доступен при наличии в комплектации М Edu сменного модуля лазерной гравировки.

- Модуль захвата механического режим «Механический захват».
- Модуль 3D-печати режим «3D-печать».
- Режим «Без насадки».

Кнопка «Руководство пользователя» позволяет перейти в руководство пользователя.

Кнопка «Действия» (Рисунок 38) позволяет отключить/включить манипулятор, вернуть манипулятор в исходное положение, включить «Режим FreeDrive».

L c	Подключен	Действия
		Исходное положение
		Режим Freedrive
		Отключить

Рисунок 38 – Кнопка «Действия»

Примечание

1 По умолчанию в приложении Promobot M Control доступен режим работы с виртуальным манипулятором. Перед подключением настоящего манипулятора, пользователь может настроить алгоритм действий манипулятора и протестировать его в виртуальной среде. Затем через кнопку «Действия» подключить настоящий манипулятор и повторить настроенный алгоритм.

2 Любой пользователь может зайти на сайт medu.promo-bot.ru, настроить алгоритм действий манипулятора, а затем запустить его воспроизведение в виртуальной среде.

7.1 Работа «Без насадки» в приложении

Режим «Без насадки» позволяет управлять манипулятором без установки насадки. Проверьте подключение к манипулятору.

В Главном меню приложения нажмите кнопку «Без насадки». Отобразится выбор способов настройки манипулятора:

Рисунок 39 – Форма выбора способа настройки манипулятора

7.1.1 Свободная настройка в режиме «Без насадки»

«Свободная настройка» – способ позволяет узнать, как работает M Edu и какие основные функции выполняет.

Панель управления «Свободная настройка»:

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть руководство с помощью кнопки «Руководство пользователя» и перейти в другой способ настройки.
- 2. Рабочая область позволяет управлять манипулятором.
- 3. Рабочая область позволяет управлять манипулятором.
- Виртуальная среда воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

Рисунок 40 – Панель управления манипулятором

Управлять манипулятором можно двумя способами: либо двигать ползунки, либо вручную вводить числа в поле рядом с ползунком.

Примечание – При ручном вводе значений не забудьте нажать Enter для совершения движения манипулятором.

Управление поворотными узлами манипулятора:

- «Поворот» изменяет угол поворотного узла J1;
- «Плечо» изменяет угол поворотного узла J2;
- «Стрела» изменяет угол поворотного узла J3.

Управление манипулятором в трехмерной системе координат (Рисунок 39):

Система координат манипулятора задана тремя взаимно перпендикулярными линиями. Начало координат – исходное положение манипулятора (оси X, Y) и поверхность, на которую он установлен (ось Z).

- Ось «Х» горизонтальная ось, простирающаяся вперед и назад.
- Ось «Y» горизонтальная ось, простирающаяся налево и направо.
- Ось «Z» вертикальная ось, простирающаяся вверх.

Рисунок 41 – Трехмерная система координат

С помощью кнопки «Остановить» манипулятор можно остановить во время движения.

7.1.2 C++ / Python в режиме «Без насадки»

«C++ / Python» – способ позволяет самостоятельно написать код алгоритма поведения манипулятора на языках C++/Python.

С++ (или просто «плюсы») – это язык программирования, который позволяет создавать сложные и быстрые программы. Он используется, когда важна высокая производительность, например, для разработки игр или сервисов, где нужно обрабатывать много данных быстро.

Python – это более простой и удобный язык для начинающих. Он подходит для самых разных задач: от создания игр и сайтов до машинного обучения и научных исследований. Python легко учить, и на нём можно быстро писать программы.

C++ и Python – это два разных языка, и каждый из них лучше подходит для своих задач. Но у них есть общее: оба поддерживают объектно- ориентированное программирование (ООП), что позволяет создавать программы, основанные на объектах и их взаимодействии.

Панель управления «C++ / Python»:

 Панель для перехода к другим способам настройки – позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть данное руководство пользователя и перейти в другой способ настройки. 2. Кнопки быстрого действия:

⊻	скачать алгоритм программы в текстовом формате
	загрузить алгоритм программы в текстовом формате
Ū	удалить алгоритм
2	писать алгоритм на языке Python
9	писать алгоритм на языке С++
🔳 Справка	открыть список поддерживаемых функций
Запуск на манипуляторе	запуск на манипуляторе

- Рабочая область предназначена для самостоятельного написания кода алгоритма поведения манипулятора на языках C++/Python. Для написания кода воспользуйтесь подсказками по кнопке «Справка».
- Виртуальная среда воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

Рисунок 42 – Панель управления манипулятором

7.2 Работа с Захватом пишущих инструментов в приложении

Для управления манипулятором в режиме «Рисование» установите модуль захвата пишущих инструментов. Проверьте подключение к манипулятору.

В Главном меню приложения нажмите кнопку «Рисование». Отобразится выбор способов настройки манипулятора (Рисунок 43).

Рисунок 43 – Форма выбора способа настройки манипулятора

7.2.1 Свободная настройка в режиме «Рисование»

«Свободная настройка» – это простой способ настроить манипулятор M Edu с захватом пишущих инструментов. Способ позволяет узнать, как работает устройство и какие основные функции выполняет.

Панель управления «Свободная настройка» (Рисунок 44):

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть руководство с помощью кнопки «Руководство пользователя и перейти в другой способ настройки.
- 2. Рабочая область позволяет управлять манипулятором.
- 3. Рабочая область позволяет управлять манипулятором.
- Виртуальная среда воспроизводит движения настоящего манипулятора. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

Рисунок 44 – Панель управления манипулятором

Управлять манипулятором можно двумя способами: либо двигать ползунки, либо вручную вводить числа в поле рядом с ползунком.

Примечание – При ручном вводе значений не забудьте нажать Enter для совершения движения манипулятором.

Управление поворотными узлами манипулятора:

- «Поворот» изменяет угол поворотного узла J1;
- «Плечо» изменяет угол поворотного узла J2;
- «Стрела» изменяет угол поворотного узла J3.

Управление манипулятором в трехмерной системе координат (Рисунок 45):

Система координат манипулятора задана тремя взаимно перпендикулярными линиями. Начало координат – нулевое положение манипулятора (оси X, Y) и поверхность, на которую он установлен (ось Z):

- ось «Х» горизонтальная ось, простирающаяся вперед и назад;
- ось «Ү» горизонтальная ось, простирающаяся налево и направо;
- ось «Z» вертикальная ось, простирающаяся вверх.

Рисунок 45 – Трехмерная система координат

С помощью кнопки «Остановить» манипулятор можно остановить во время движения.

7.2.2 Blockly в режиме «Рисование»

Blockly – это способ управления манипулятором с помощью визуального языка программирования Google Blockly. Можно создавать алгоритмы и задавать поведение устройства, перетаскивая блоки с командами.

Панель управления «Blockly» (Рисунок 46):

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть данное руководство пользователя и перейти в другой способ настройки.
- 2. Кнопки быстрого действия:

\downarrow	скачать алгоритм программы в
	текстовом формате
	открыть список готовых
C 7	алгоритмов
🖂 Библиотека алгоритмов	загрузить алгоритм программы в
	текстовом формате
Запуск на манипуляторе	запуск на манипуляторе

- 3. Библиотека блоков содержит разделы блок-команд.
- 4. Рабочая область область для построения алгоритма.

5. Виртуальная среда – воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

< На главную 1	⊻ 🗅	🖂 Библиотека алгоритмов 🕨 Запуск на манипуляторе	2
	Движение	4	5
Zc.	Звуки		
Виртуальный	Позиции		
Действия	3		
			A
Руководство			1947
пользователя			
(÷)			
Свободная настройка			
_			
(f)			
Blockly			
Ø			
Рисование			
версия: 1.12.1			

Рисунок 46 – Панель управления манипулятором

Для построения алгоритма выберите нужную блок-команду из библиотеки блоков и с помощью курсора перетащите его в рабочую область.

- Раздел «Движение» (Рисунок 47):
 - «Переместиться в точку X за t секунд», где X это выбор позиции, t это время движения манипулятора;
 - «Подождать t секунд», где t это время ожидания манипулятора.

Рисунок 47 – Раздел «Движение»

- Раздел «Звуки» (Рисунок 48):
 - «Воспроизвести аудио {sound, start, finish, wait} Фоновое воспроизведение {флаг}», где sound звук, start начинать, finish заканчивать, wat что, флаг воспроизвести выбранное аудио с возможностью фонового воспроизведения.

Рисунок 48 – Раздел «Звуки»

- Раздел «Позиции» (Рисунок 49) содержит кнопку «Добавить позицию», при нажатии на которую открывается форма для создания позиции манипулятора.

Движение	Добавить позицию	Позиция	\triangleright ×
Звуки		Наименование	
Позиции		Введите имя позиции	
		Продалжительность, сек.	
		Life-режим Движение манитулятора только по кнопке Play	
		Настроить поворот	
		Паворат -38°	
		-36	-36
		Плечо -26°	
		-26	-26
		Стрела -28°	
		-28	-28
		Сохранить Остановка	

Рисунок 49 – Раздел «Позиции»

Форма содержит:

- «Наименование» это X в «Переместиться в точку X за t секунд»;
- «Продолжительность, сек» это t в «Переместиться в точку X за t секунд»;

- «Life-режим» разрешает движение манипулятора только по кнопке «Запуск на манипуляторе».
 «Настроить поворот» – настройка позиции стрелы манипулятора.
- «Сохранить» сохранить позицию.
- «Остановка» остановить манипулятор во время настройки позиции.

При нажатии на блок-команду правой кнопкой мыши блок можно изменять (Рисунок 50).

Переме	еститься в точку секунд	Нулевое	положение	е по Дублировать		
3a 0 0	секунд		Д	Дублировать	^	
			Д 	Цублировать 	Â.	
			· · · B			
				Зставки внутри		
			· · · ·	Свернуть блок	1	
				Отключить блок		
				AND THE FROM		
			💆	удалить олок	Ψ.	

Рисунок 50 – Контекстное меню блок-команды

Процесс построения алгоритма:

- 1. Создайте позиции, то есть точки, между которыми манипулятор будет выполнять перемещение.
- Добавьте в рабочую область блоки-команды из раздела «Движение» в каждой блок-команде должна быть указана позиция, в которую необходимо переместиться.
- Добавьте в рабочую область блоки-команды «Подождать t секунд» и «Воспроизвести аудио {sound, start, finish, wait} Фоновое воспроизведение {флаг}».
- 4. Соедините блок-команды друг с другом в правильном порядке, чтобы движение между точками выполнялось последовательно.

Можно использовать Библиотеку алгоритмов – содержит готовые алгоритмы:

5. Нажмите кнопку «Библиотека алгоритмов». Отобразится форма выбора алгоритма (Рисунок 52).

Рисунок 51 – Форма выбора алгоритма

6. Выберите алгоритм и нажмите кнопку «Выбрать». Готовый алгоритм отобразится в рабочей области (Рисунок 51).

Рисунок 52 – Готовый алгоритм Blockly

7. Запустите выполнение алгоритма на манипуляторе, нажав кнопку «Запуск на манипуляторе».
7.2.3 Рисование в режиме «Рисование»

«Рисование» – способ позволяет выбрать изображение из готовой библиотеки (Рисунок 53) и запустить манипулятор, чтобы он ее нарисовал.

Рисунок 53 – Библиотека рисунков

Чтобы воспользоваться, выберите изображение и нажмите кнопку «Выбрать» либо закройте форму, нажав кнопку «Закрыть». Выбранное изображение отобразится на области рисования.

< На главную		N	1	Ø															
	2																		
	L.																		
ec.	-	\sim																	
D																			
Биртуальный																			
Действия																			
																	+		
нользователя																			
			1								1		1						
۴€٦					*		+		+		+			*		*	+		
لا لي يا																		-	
Свободная настройка																			
								*			*								
										1				1			1		
[c]														1		1			
	-																		
Blockly			1			1		1			1		1	1		1	1		
			1			1					1								
CO	1.										1					1			
Ś	1.																		
Рисование			÷.				÷.				į.			÷.		į.	į.		
версия: 1.12.1																			

Рисунок 54 – Панель управления манипулятором

Перед запуском задайте начальное положение манипулятора:

- 1. Нажмите кнопку
- 2. С помощью кнопки FreeDrive опустите стрелу манипулятора (пишущий инструмент) на стол и нажмите «Задать».

Для запуска рисования нажмите кнопку 🕒. Для остановки рисования нажмите

кнопку

Чтобы заново выбрать рисунок нажмите кнопку

7.3 Работа с Вакуумным захватом в приложении

Для управления манипулятором в режиме «Вакуумный захват» установите модуль захвата вакуумного. Проверьте подключение к манипулятору.

В Главном меню приложения нажмите кнопку «Вакуумный захват». Отобразится выбор способов настройки манипулятора:

Вакуум	ный захват Х
۴ ۲ ۲ ۲ ۲ ۲	Свободная настройка
G	Blockly
>_	C++ / Python
	Руководство пользователя

Рисунок 55 – Форма выбора способа настройки манипулятора

7.3.1 Свободная настройка в режиме «Вакуумный захват»

«Свободная настройка» – это простой способ настроить манипулятор M Edu с вакуумным захватом. Способ позволяет узнать, как работает устройство и какие основные функции выполняет.

Панель управления «Свободная настройка» (Рисунок 54):

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть руководство с помощью кнопки «Руководство пользователя и перейти в другой способ настройки.
- 2. Рабочая область позволяет управлять манипулятором.
- 3. Рабочая область позволяет управлять манипулятором.

 Виртуальная среда – воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

Рисунок 56 – Панель управления манипулятором

Управлять манипулятором можно двумя способами: либо двигать ползунки, либо вручную вводить числа в поле рядом с ползунком. Управление поворотными узлами манипулятора:

- «Поворот» изменяет угол поворотного узла J1;
- «Плечо» изменяет угол поворотного узла J2;
- «Стрела» изменяет угол поворотного узла J3.

Управление манипулятором в трехмерной системе координат (Рисунок 57):

Система координат манипулятора задана тремя взаимно перпендикулярными линиями. Начало координат – нулевое положение манипулятора (оси X, Y) и поверхность, на которую он установлен (ось Z):

- ось «Х» горизонтальная ось, простирающаяся вперед и назад;
- ось «Ү» горизонтальная ось, простирающаяся налево и направо;
- ось «Z» вертикальная ось, простирающаяся вверх.

Рисунок 57 – Трехмерная система координат

- Поворот насадки – изменяет угол поворотного узла J4 (положительное направление - против часовой стрелки).

Примечание – При ручном вводе значений не забудьте нажать Enter для совершения движения.

Для включения насоса используется кнопка «Включить насос», для выключения – «Выключить насос». С помощью кнопки «Остановить» манипулятор можно остановить во время движения.

7.3.2 Blockly в режиме «Вакуумный захват»

Blockly – это способ управления манипулятором с помощью визуального языка программирования Google Blockly. Можно создавать алгоритмы и задавать поведение устройства, перетаскивая блоки с командами.

Панель управления Blockly (Рисунок 58):

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть данное руководство пользователя и перейти в другой способ настройки.
- 2. Кнопки быстрого действия:

	скачать алгоритм программы в текстовом формате
$\begin{bmatrix} \mathbf{e}_{\mathbf{r}} \\ \mathbf{e} \end{bmatrix}$	открыть список готовых алгоритмов
🖾 Библиотека алгоритмов	загрузить алгоритм программы в текстовом формате
 Запуск на манипуляторе 	запуск на манипуляторе

- 3. Библиотека блоков содержит разделы блок-команд.
- 4. Рабочая область область для построения алгоритма.
- 5. Виртуальная среда воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

Рисунок 58 – Панель управления манипулятором

Для построения алгоритма выберите нужную блок-команду из библиотеки блоков и с помощью курсора перетащите его в рабочую область.

- Раздел «Движение» (Рисунок 59):
 - «Переместиться в точку X за t секунд», где X это выбор позиции, t это время движения манипулятора;
 - «Подождать t секунд», где t это время ожидания манипулятора;
 - «Вакуумный захват Включен/Выключен» включение насоса либо выключение насоса.

 «Повернуть насадку на N°» – изменить угол поворотного узла J4, где N – угол разворота поворотного модуля инструмента.

Рисунок 59 – Раздел «Движение»

- Раздел «Звуки» (Рисунок 60):
 - «Воспроизвести аудио {sound, start, finish, wait} Фоновое воспроизведение {флаг}», где sound звук, start начинать, finish заканчивать, wat что, флаг воспроизвести выбранное аудио с возможностью фонового воспроизведения.

Рисунок 60 – Раздел «Звуки»

- Раздел «Позиции» (Рисунок 61) содержит кнопку «Добавить позицию», при нажатии на которую открывается форма для создания позиции манипулятора.

Рисунок 61 – Раздел «Позиции»

Форма содержит:

- «Наименование» это X в «Переместиться в точку X за t секунд»;
- «Продолжительность, сек» это t в «Переместиться в точку X за t секунд»;
- «Life-режим» разрешает движение манипулятора только по кнопке «Запуск на манипуляторе».
- «Настроить поворот» настройка позиции стрелы манипулятора.
- «Сохранить» сохранить позицию.
- «Остановка» остановить манипулятор во время настройки позиции.

При нажатии на блок-команду правой кнопкой мыши блок можно изменять (Рисунок 62).

Рисунок 62 – Контекстное меню блока-команды

Процесс построения алгоритма:

- 1. Создайте позиции, то есть точки, между которыми манипулятор будет выполнять перемещение.
- Добавьте в рабочую область блоки-команды из раздела «Движение» в каждой блок-команде должна быть указана позиция, в которую необходимо переместиться.
- Добавьте в рабочую область блоки-команды «Подождать t секунд» и «Воспроизвести аудио {sound, start, finish, wait} Фоновое воспроизведение {флаг}».
- Соедините блок-команды друг с другом в правильном порядке, чтобы движение между точками выполнялось последовательно. Можно использовать Библиотеку алгоритмов – содержит готовые алгоритмы:
- 5. Нажмите кнопку «Библиотека алгоритмов». Отобразится форма выбора алгоритма (Рисунок 63).

Выберит	е алгоритм
Перемеще	ние объекта из точки А в точку Б
Выбрать	Закрыть

Рисунок 63 – Форма выбора алгоритма

6. Выберите алгоритм и нажмите кнопку «Выбрать». Готовый алгоритм отобразится в рабочей области (Рисунок 64).

Рисунок 64 – Готовый алгоритм Blockly

7. Запустите выполнение алгоритма на манипуляторе, нажав кнопку «Запуск на манипуляторе».

7.3.3 С++ / Python в режиме «Вакуумный захват»

См. раздел «С++ / Python в режиме «Без насадки».

7.4 Работа с Механическим захватом в приложении

Для управления манипулятором в режиме «Механический захват» сначала установите модуль захвата механического. Проверьте подключение к манипулятору.

В Главном меню приложения нажмите кнопку «Механический захват». Отобразится выбор способов настройки манипулятора (Рисунок 65).

Механ	ический захват	\times
د ب ب ب ب	Свободная настройка	
Ç	Blockly	
>_	C++ / Python	
	Руководство пользователя	

Рисунок 65 – Форма выбора способа настройки манипулятора

7.4.1 Свободная настройка в режиме «Механический захват»

Свободная настройка – это простой способ настроить манипулятор M Edu с механическим захватом. Способ позволяет узнать, как работает устройство и какие основные функции выполняет.

Панель управления «Свободная настройка» (Рисунок 66):

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть руководство с помощью кнопки «Руководство пользователя и перейти в другой способ настройки.
- 2. Рабочая область позволяет управлять манипулятором.
- 3. Рабочая область позволяет управлять манипулятором.
- Виртуальная среда воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

Рисунок 66 – Панель управления манипулятором

Управлять манипулятором можно двумя способами: либо двигать ползунки, либо вручную вводить числа в поле рядом с ползунком.

Примечание – При ручном вводе значений не забудьте нажать Enter для совершения движения.

Управление поворотными узлами манипулятора:

- «Поворот» изменяет угол поворотного узла J1;
- «Плечо» изменяет угол поворотного узла J2;
- «Стрела» изменяет угол поворотного узла J3.

Управление манипулятором в трехмерной системе координат (Рисунок 67):

Система координат манипулятора задана тремя взаимно перпендикулярными линиями. Начало координат – нулевое положение манипулятора (оси X, Y) и поверхность, на которую он установлен (ось Z):

- ось «Х» горизонтальная ось, простирающаяся вперед и назад;
- ось «Ү» горизонтальная ось, простирающаяся налево и направо;
- ось «Z» вертикальная ось, простирающаяся вверх.

Рисунок 67 – Трехмерная система координат

- «Сжатие» изменяет угол раскрытия когтей.
- «Поворот насадки» изменяет угол поворотного узла J4 (положительное направление – против часовой стрелки).

С помощью кнопки «Остановить» манипулятор можно остановить во время движения.

7.4.2 С++ / Python в режиме «Механический захват»

См. раздел «С++ / Python в режиме «Без насадки».

7.4.3 Blockly в режиме «Вакуумный захват»

Blockly – это способ управления манипулятором с помощью визуального языка программирования Google Blockly. Можно создавать алгоритмы и задавать поведение устройства, перетаскивая блоки с командами.

Панель управления «Blockly» (Рисунок 68):

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть данное руководство пользователя и перейти в другой способ настройки.
- 2. Кнопки быстрого действия:

4	скачать алгоритм программы в
	текстовом формате
	открыть список готовых
. 4	алгоритмов
🖂 Библиотека алгоритмов	загрузить алгоритм программы в
	текстовом формате
• Запуск на манипуляторе	запуск на манипуляторе

- 3. Библиотека блоков содержит разделы блок-команд.
- 4. Рабочая область область для построения алгоритма.
- Виртуальная среда воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

< На главную 1	⊻ 🗅	🖻 Библиотека алгоритмов 🕨 Запуск на манипуляторе	2
	Движение	4	5
Z c	Звуки		
Виртуальный	Позиции		
Действия	5		
Руководство пользователя			5
(<u>*</u>)			-
Свободная настройка			
_			
(f)			
Blockly			
C++ / Python			
версия: 1.12.1			

Рисунок 68 – Панель управления манипулятором

Для построения алгоритма выберите нужную блок-команду из библиотеки блоков и с помощью курсора перетащите его в рабочую область.

- Раздел «Движение» (Рисунок 69):
 - «Переместиться в точку X за t секунд», где X это выбор позиции, t это время движения манипулятора;
 - «Подождать t секунд», где t это время ожидания манипулятора;

- «Сжать на N°» сжать или разжать когти захвата на N градусов, где N угол разжатия когтей относительно вертикальной оси.
- «Повернуть насадку на N°» изменить угол поворотного узла J4, где N угол разворота поворотного модуля инструмента.

Движение	Переместиться в точку Нулевое положение -
Звуки	за 0.5 секунд
Позиции	Подождать 0 секунд
	Сжать на 0 °
	Повернуть насадку на 0°

Рисунок 69 – Раздел «Движение»

- Раздел «Звуки» (Рисунок 70):
 - «Воспроизвести аудио {sound, start, finish, wait} Фоновое воспроизведение {флаг}», где sound звук, start начинать, finish заканчивать, wat что, флаг воспроизвести выбранное аудио с возможностью фонового воспроизведения.

Движение	1	Во	сп	рои	ISBO	ст	иа	уди	10	SOL	Ind	-	1
Звуки	1	Φ	юно	BOE	BC	осп	pov	ISB	еде	ни	8		l,
Позиции													

Рисунок 70 – Раздел «Звуки»

- Раздел «Позиции» (Рисунок 71) содержит кнопку «Добавить позицию», при нажатии на которую открывается форма для создания позиции манипулятора.

Движение Звуки	Добавить позицию	Позиция	\triangleright	\times
Позиции		Наименование		
		Введите имя позиции		
		Продолжительность, сек.		
		0,5		
		Life-режим Дакование манипулятора только по кнопке Play		
		Настроить поворот		
		Поварот 09		
		0.	0	
		Племо -23°		
		-23*	-23	
		Стрела -46°		
		-46°	-46	
		Сохранить Остановка		

Рисунок 71 – Раздел «Позиции»

Форма содержит:

- «Наименование» это X в «Переместиться в точку X за t секунд»;
- «Продолжительность, сек» это t в «Переместиться в точку X за t секунд»;
- «Life-режим» разрешает движение манипулятора только по кнопке Play.
- «Настроить поворот» настройка позиции стрелы манипулятора.
- «Сохранить» сохранить позицию.
- «Остановка» остановить манипулятор во время настройки позиции. При нажатии на блок-команду правой кнопкой мыши блок можно изменять (Рисунок 72).

Рисунок 72 – Контекстное меню блока-команды

Процесс построения алгоритма:

- 1. Создайте позиции, то есть точки, между которыми манипулятор будет выполнять перемещение.
- Добавьте в рабочую область блоки-команды из раздела «Движение» в каждой блок-команде должна быть указана позиция, в которую необходимо переместиться.
- Добавьте в рабочую область блоки-команды «Подождать t секунд» и «Воспроизвести аудио {sound, start, finish, wait} Фоновое воспроизведение {флаг}».
- 4. Соедините блок-команды друг с другом в правильном порядке, чтобы движение между точками выполнялось последовательно.

Можно использовать Библиотеку алгоритмов – содержит готовые алгоритмы:

5. Нажмите кнопку «Библиотека алгоритмов». Отобразится форма выбора алгоритма (Рисунок 73).

Выберите алгоритм							
Перемеще	ние объекта из точки А в точку Б						
Выбрать	Закрыть						

Рисунок 73 – Форма выбора алгоритма

6. Выберите алгоритм и нажмите кнопку «Выбрать». Готовый алгоритм отобразится в рабочей области (Рисунок 74).

Рисунок 74 – Готовый алгоритм Blockly

7. Запустите выполнение алгоритма на манипуляторе, нажав кнопку «Запуск на манипуляторе».

7.5 Работа с Модулем лазерной гравировки в приложении

Для управления манипулятором в режиме «Гравировка» сначала установите модуль лазерной гравировки. Проверьте подключение к манипулятору.

В Главном меню приложения нажмите кнопку «Гравировка». Отобразится уведомление «Техника безопасности» (Рисунок 75).

Техника безопасности

Шаг 1 из 3

ВНИМАНИЕ!

ПРИ ЛЮБЫХ ДЕЙСТВИЯХ С ЛАЗЕРОМ НЕОБХОДИМО ИСПОЛЬЗОВАТЬ ЗАЩИТНЫЕ ОЧКИ. В ПРОТИВНОМ СЛУЧАЕ ВЕЛИКА ВЕРОЯТНОСТЬ ОЖОГА СЕЧАТКИ ГЛАЗА.

- Лазер может нагревать объекты, когда он находится в сфокусированном состоянии, поэтому такие объекты, как бумага или дерево, могут быть гравированы или сожжены
- НЕ направляйте лазер на людей или животных
- НЕ позволяйте детям играть с ним в одиночку
- Необходим постоянный контроль
- Немедленно выключите лазер после гравировки
- В комплект входят мелкие запасные части, поэтому, пожалуйста, держите их подальше от детей, так как они представляют опасность удушья
- НЕ позволяйте детям играть с манипулятором Promobot M Edu в одиночку. Все процессы должны контролироваться во время работы. После завершения процессов, пожалуйста, немедленно выключите оборудование
- При использовании лазерного модуля, пожалуйста, надевайте защитные очки
- Избегайте прямого воздействия излучения на глаза или кожу. Держитесь на безопасном расстоянии от лазера, чтобы избежать случайных травм
- НЕ помещайте руки в рабочую зону во время работы манипуляторома Promobot M Edu. Невыполнение этого требования может привести к синякам и/или защемлению
- Используйте стойкую к возгоранию поверхность в качестве подложки, на которой будет находится объект, предназначенный для обработки. Для этого подойдет лист стекла или металла. Важно, чтобы подложку не мог прожечь лазер. В качестве обрабатываемого материала лучше всего использовать плотный картон, но подойдут и листы канцелярской бумаги

Понятно, далее

Рисунок 75 – Техника безопасности

Пройдите по шагам ознакомления и отобразится выбор способов настройки манипулятора (Рисунок 76):

X

Гравир	овка	×
444 444 444	Свободная настройка	
Ç	Blockly	
>_	C++ / Python	
C	Рисование	
	Руководство пользователя	

Рисунок 76 – Форма выбора способа настройки манипулятора

7.5.1 Свободная настройка в режиме «Гравировка»¹

Свободная настройка – это простой способ настроить манипулятор M Edu с лазером. Способ позволяет узнать, как работает устройство и какие основные функции выполняет.

Панель управления «Свободная настройка» (Рисунок 77):

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть руководство с помощью кнопки «Руководство пользователя и перейти в другой способ настройки.
- 2. Рабочая область позволяет управлять манипулятором.
- 3. Рабочая область позволяет управлять манипулятором.
- Виртуальная среда воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

¹ — Режим доступен при наличии в комплектации М Edu сменного модуля лазерной гравировки.

Рисунок 77 – Панель управления манипулятором

Управлять манипулятором можно двумя способами: либо двигать ползунки, либо вручную вводить числа в поле рядом с ползунком.

Примечание – При ручном вводе значений не забудьте нажать Enter для совершения движения.

Управление поворотными узлами манипулятора:

- «Поворот» изменяет угол поворотного узла J1;
- «Плечо» изменяет угол поворотного узла J2;
- «Стрела» изменяет угол поворотного узла J3.

Управление манипулятором в трехмерной системе координат (Рисунок 78):

Система координат манипулятора задана тремя взаимно перпендикулярными линиями. Начало координат - нулевое положение манипулятора (оси X, Y) и поверхность, на которую он установлен (ось Z):

- ось «Х» горизонтальная ось, простирающаяся вперед и назад;
- ось «Ү» горизонтальная ось, простирающаяся налево и направо;
- ось «Z» вертикальная ось, простирающаяся вверх.

Рисунок 78 – Трехмерная система координат

Для включения гравировки используется кнопка «Включить гравер», для выключения – «Выключить гравер». С помощью кнопки «Остановить» манипулятор можно остановить манипулятор во время движения.

7.5.2 Blockly в режиме «Гравировка»

Blockly – это способ управления манипулятором с помощью визуального языка программирования Google Blockly. Можно создавать алгоритмы и задавать поведение устройства, перетаскивая блоки с командами.

Панель управления «Blockly» (Рисунок 79):

- Панель для перехода к другим способам настройки позволяет вернуться в Главное меню, подключить/отключить манипулятор, открыть данное руководство пользователя и перейти в другой способ настройки.
- 2. Кнопки быстрого действия:

\checkmark	скачать алгоритм программы в
	текстовом формате
	открыть список готовых алгоритмов
🖂 Библиотека алгоритмов	загрузить алгоритм программы в
	текстовом формате
Запуск на манипуляторе	запуск на манипуляторе

3. Библиотека блоков – содержит разделы блок-команд.

- 4. Рабочая область область для построения алгоритма.
- Виртуальная среда воспроизводит движения настоящего манипулятора в виртуальной среде. С помощью курсора мыши виртуальный манипулятор можно приблизить, отдалить и рассмотреть со всех сторон.

< На главную 1	⊻ 🛱	🖻 Библиотека алгоритмов 🕨 Запуск на манипуляторе	2
	Движение		5
\mathbf{z}_{c}	Звуки		
Виртуальный	Позиции		
Действия	3		
L.			
пользователя			
(7)			
Свободная настройка			
رج ا			
لی)			
Blockly			
>_			
C++ / Python			e e la construcción de l
версия: 1.12.1			

Рисунок 79 – Панель управления манипулятором

Для построения алгоритма выберите нужную блок-команду из библиотеки блоков и с помощью курсора перетащите его в рабочую область.

- Раздел «Движение» (Рисунок 80):
 - «Переместиться в точку X за t секунд», где X это выбор позиции, t это время движения манипулятора;
 - «Подождать t секунд», где t это время ожидания манипулятора;
 - «Лазерный гравер Включен/Выключен» включение лазера либо выключение лазер.

Рисунок 80 – Раздел «Движение»

- Раздел «Звуки» (Рисунок 81):
 - «Воспроизвести аудио {sound, start, finish, wait} Фоновое воспроизведение {флаг}», где sound звук, start начинать, finish заканчивать, wat что, флаг воспроизвести выбранное аудио с возможностью фонового воспроизведения.

Движение	1	Bo	сп	рои	ISBO	ест	иа	уди	0	sol	ind		ľ
Звуки	1		П	BUG	; BU	JGII	por	13156	зде	ни	-	1	
Позиции													1

Рисунок 81 – Раздел «Звуки»

- Раздел «Позиции» содержит кнопку «Добавить позицию», при нажатии на которую открывается форма для создания позиции манипулятора.

Движение Звуки	Добавить позицию	Позиция	\triangleright	\times
Позиции		Наименование		
		Продолжительность, сек. 0,5		
		Life-режим Двихение манипулятора только по кнопке Play		
		Настроить поворот		
		Поворот 0 °		
		0°	0	
		Плеко -23°		
		-23*	-23	
		Стрела -46°		
		-46°	-46	
		Сохранить Остановка		

Рисунок 82 – Раздел «Позиции»

Форма содержит:

- «Наименование» это X в «Переместиться в точку X за t секунд»;
- «Продолжительность, сек» это t в «Переместиться в точку X за t секунд»;

- «Life-режим» разрешает движение манипулятора только по кнопке «Запуск на манипуляторе».
 «Настроить поворот» – настройка позиции стрелы манипулятора.
- «Сохранить» сохранить позицию.
- «Остановка» остановить манипулятор во время настройки позиции. При нажатии на блок-команду правой кнопкой мыши блок можно изменять (Рисунок 82).

Рисунок 83 – Контекстное меню блока-команды

Процесс построения алгоритма:

- 1. Создайте позиции, то есть точки, между которыми манипулятор будет выполнять перемещение.
- Добавьте в рабочую область блоки-команды из раздела «Движение» в каждой блок-команде должна быть указана позиция, в которую необходимо переместиться.
- Добавьте в рабочую область блоки-команды «Подождать t секунд» и «Воспроизвести аудио {sound, start, finish, wait} Фоновое воспроизведение {флаг}».
- 4. Соедините блок-команды друг с другом в правильном порядке, чтобы движение между точками выполнялось последовательно.
- 5. Запустите выполнение алгоритма на манипуляторе, нажав кнопку «Запуск на манипуляторе».

7.5.3 С++ / Python в режиме «Гравировка»

См. раздел «С++ / Python в режиме «Без насадки».

7.5.4 Рисование в режиме «Гравировка»

Рисование – способ позволяет выбрать изображение из готовой библиотеки (Рисунок 84) и запустить манипулятор, чтобы он ее нарисовал.

Рисунок 84 – Библиотека рисунков

Чтобы воспользоваться, выберите изображение и нажмите кнопку «Выбрать» либо закройте форму, нажав кнопку «Закрыть». Выбранное изображение отобразится на области рисования (Рисунок 85).

< На главную		× ھا	9	•													
	ſ																
S C	5	~														÷.	
-																	
Виртуальный																	
Действия																	
					1		1			1			1				
Руководство					1												
пользователя																	
							1										
د ش																	
КĴУ																	
Свободная настройка						 -											
E																	
ζIJ																	
Blockly																	
Ľ-																	
C++ / Python																	
(A)																	
U																	
Рисование																	
	ι.																
						Ĩ	Ĩ.		Ţ.						Ĩ.	Ţ	
версия: 1.12.1																	

Рисунок 85 – Панель управления манипулятором

Чтобы заново выбрать рисунок нажмите кнопку

7.6 Работа с модулем 3D-печати в приложении

Для управления манипулятором в режиме «3D-печать» установите модуль 3Dпечати. Проверьте подключение к манипулятору. В Главном меню приложения нажмите кнопку «Рисование». Отобразится выбор способов настройки манипулятора (Рисунок 86).

3D-печа	ТЬ	×
C	Печать	
	Руководство пользователя	

Рисунок 86 – Форма выбора способа настройки манипулятора

7.6.1 Печать в режиме «Печать»

«Печать» – способ позволяет выбрать фигуру из готовой библиотеки (Рисунок 87) и запустить 3D-печать на манипуляторе.

Кубик	Цилиндр	Параллелепипед	Треугольная призма	Пятиугольная призма	Шестиугольная призма	Звезда
			9		Ş	S
Сердце	Пирамида	Конус	0	1	2	3
	Ś	9			8	29
4	5	6	7	7	8	9

Рисунок 87 – Библиотека фигур

Выберите любое изображение и нажмите кнопку «Выбрать». Объект отобразится в области печати (Рисунок 88).

< На главную			R	y	•																
2°	<		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Виртуальный																					
Действия																					
		-																			
Руководство пользователя																					
(S)						0		0			0					0					
Печать	•	-									0					0					
			• •			0															

Рисунок 88 – Панель управления манипулятором

Перед запуском задайте начальное положение манипулятора:

- 6. Нажмите кнопку
- 7. С помощью кнопки FreeDrive опустите стрелу манипулятора (пишущий инструмент) на стол и нажмите «Задать».

Запустите процесс 3D-печати нажав кнопку . Отобразится уведомление «Программа выполняется» (Рисунок 89).

< На главную			5	Ø																				
2 ⁰⁰ Виртуальный	•	U		0 0 0	(Π	lpo	гра	мм	ав	ып	олн	яет	гся							•	•	
Действия	•	-	•	•	•	-	•	•	-	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•
Руководство пользователя	•	•	0 0 0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0 0 0
Печать	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• • • • •

Рисунок 89 – Панель управления манипулятором

PLA-филамент в печатающей головке начнет нагреваться, при достижении нужной температуры (примерно через 5 минут) манипулятор начнет печать объекта.

Примечание

1 Печатающая головка и выходящий из нее пластик имеют высокую температуру. Прикосновение к работающему оборудованию может привести к ожогам.

2 Ожидайте не менее 15 минут после окончания печати для снятия 3D-объекта

8 Обновление Promobot M Control

- 1. Подключитесь к манипулятору с использованием монитора и элементов управления.
- 2. Закройте приложение.
- 3. Запустите файл Medu_update на рабочем столе (Рисунок 90).

Рисунок 90 – Файл Medu_update

4. Откроется диалоговое окно (Рисунок 91).

Рисунок 91 – Диалоговое окно

- 5. Придерживая стрелу манипулятора, введите Y и нажмите Enter.
- 6. Обновление длится примерно 35 минут.
- 7. По окончанию диалоговое окно закроется.
- 8. Откройте браузер и запустите приложение повторно.

9 Техническое обслуживание

9.1 Общие указания

Техническое обслуживание М Edu должно проводиться регулярно для обеспечения его надежной работы и продления срока службы. Рекомендуется проводить техническое обслуживание не реже одного раза в месяц, а также после каждого интенсивного использования.

Основные задачи технического обслуживания:

- проверка работоспособности всех компонентов;
- очистка от пыли и загрязнений;
- обновление программного обеспечения.

9.2 Меры безопасности

Техническое обслуживание требуется проводить в хорошо проветриваемом помещении. Перед началом обслуживания отключите M Edu от источника питания.

9.3 Порядок технического обслуживания изделия

- 1. Проверьте состояние корпуса манипулятора М Edu на наличие трещин и повреждений.
- 2. Убедитесь, что все соединения надежны, а кабели не имеют изломов или оголенных участков.
- 3. Используйте мягкую ткань для протирки корпуса манипулятора M Edu и сменных модулей.
- 4. Удалите пыль и грязь из щелей и труднодоступных мест манипулятора и сменных модулей с помощью сжатого воздуха.
- 5. Для очистки стола модуля 3D-печати используйте сначала салфетку, смоченную водой, а далее спиртовую салфетку.
- 6. При обнаружении изношенных или поврежденных деталей обратитесь к производителю.

7. После завершения всех работ включите манипулятор M Edu и проведите тестирование его функций. Убедитесь, что все системы работают корректно.